skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohammad-Nezhad, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let$$\mathrm {R}$$be a real closed field. Given a closed and bounded semialgebraic set$$A \subset \mathrm {R}^n$$and semialgebraic continuous functions$$f,g:A \rightarrow \mathrm {R}$$such that$$f^{-1}(0) \subset g^{-1}(0)$$, there exist an integer$$N> 0$$and$$c \in \mathrm {R}$$such that the inequality (Łojasiewicz inequality)$$|g(x)|^N \le c \cdot |f(x)|$$holds for all$$x \in A$$. In this paper, we consider the case whenAis defined by a quantifier-free formula with atoms of the form$$P = 0, P>0, P \in \mathcal {P}$$for some finite subset of polynomials$$\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$$, and the graphs of$$f,g$$are also defined by quantifier-free formulas with atoms of the form$$Q = 0, Q>0, Q \in \mathcal {Q}$$, for some finite set$$\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$$. We prove that the Łojasiewicz exponent in this case is bounded by$$(8 d)^{2(n+7)}$$. Our bound depends ondandnbut is independent of the combinatorial parameters, namely the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. The previous best-known upper bound in this generality appeared inP. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991)and depended on the sum of degrees of the polynomials defining$$A,f,g$$and thus implicitly on the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)). 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  2. This paper revisits the parametric analysis of semidefinite optimization problems with respect to the perturbation of the objective function along a fixed direction. We review the notions of invariancy set, nonlinearity interval, and transition point of the optimal partition, and we investigate their characterizations. We show that the set of transition points is finite and the continuity of the optimal set mapping, on the basis of Painlevé–Kuratowski set convergence, might fail on a nonlinearity interval. Under a local nonsingularity condition, we then develop a methodology, stemming from numerical algebraic geometry, to efficiently compute nonlinearity intervals and transition points of the optimal partition. Finally, we support the theoretical results by applying our procedure to some numerical examples. 
    more » « less